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Abstract
In this paper, we review and extend recent research on averaging integrators
for multiple time-scale simulation such as are needed for physical N-body
problems including molecular dynamics, materials modelling and celestial
mechanics. A number of methods have been proposed for direct numerical
integration of multiscale problems with special structure, such as the mollified
impulse method (Garcia-Archilla, Sanz-Serna and Skeel 1999 SIAM J. Sci.
Comput. 20 930–63) and the reversible averaging method (Leimkuhler and
Reich 2001 J. Comput. Phys. 171 95–114). Features of problems of interest,
such as thermostatted coarse-grained molecular dynamics, require extension
of the standard framework. At the same time, in some applications the
computation of averages plays a crucial role, but the available methods have
deficiencies in this regard. We demonstrate that a new approach based on
the introduction of shadow variables, which mirror physical variables, has
promised for broadening the usefulness of multiscale methods and enhancing
accuracy of or simplifying computation of averages. The shadow variables must
be computed from an auxiliary equation. While a geometric integrator in the
extended space is possible, in practice we observe enhanced long-term energy
behaviour only through use of a variant of the method which controls drift
of the shadow variables using dissipation and sacrifices the formal geometric
properties such as time-reversibility and volume preservation in the enlarged
phase space, stabilizing the corresponding properties in the physical variables.
The method is applied to a gravitational three-body problem as well as a
partially thermostatted model problem for a dilute gas of diatomic molecules.
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1. Introduction

Multiple time-scale problems arise in many research fields such as astrophysical simulation
[26] and materials modelling [6, 34]. In these problems, the accurate resolution of the fastest
components of the dynamics places a severe restriction on the stepsize for the numerical
simulation and leads to a large computational overhead. Many efforts at model simplification
or reduction have been attempted which aim to eliminate or reduce the need to resolve
fast components; then one seeks a self-consistent closed system independent of the fast
components. Examples of such methods include the classical averaging techniques of celestial
mechanics [1], time homogenization methods for stiff potentials [5, 32] and the molecular
theory of Brownian motion [7, 20, 29]. However, such methods rely on restrictive assumptions
(scale separation, boundedness) regarding the fast dynamics that are typically substantially less
general than are admitted by the original models. As an alternative, it is sometimes possible
to develop an on-the-fly averaging procedure which directly incorporates propagation of fast
variables or separates numerical treatment of fast forces. These methods offer potentially
more accurate simulation and direct access to (often simplified) fast dynamics can be useful
for diagnostic or modelling purposes. Some numerical schemes that are useful for this
purpose include multiple timestep method [35], the mollified impulse (MI) method [9] and
the reversible averaging (RA) method [24]. Several of these methods can be characterized, at
least for linear fast forces, as ‘Gautschi methods’ [12].

An important property of the MI and RA methods is their preservation of certain types
of geometric structure. Much attention has been paid in recent years to the symplectic
structure [8, 12, 25]. The MI method can be made to be symplectic, for example. A
weaker but still important property is volume preservation. As we point out in section 2,
the RA method is volume preserving and time-reversible. While the relevance of properties
such as symplecticness, time-reversibility and volume preservation to the design of numerical
integrators is becoming well established, complex applications often require complex solutions
which force some of the available structure to be discarded in favour of efficiency. The
challenges of large-scale computation are particularly acute in multiscale applications, where
dissipation is routinely used (even in conservative systems) to model in a simplified way
the flow of energy to fine scales. In molecular dynamics, for example, the dissipative scheme
of Kolafa [21] has been suggested to enable the rapid relaxation of the polarization field
along an MD trajectory. Langevin dynamics, incorporating both dissipation and stochastic
perturbation, is routinely used to facilitate sampling from the canonical ensemble. Our
point of view is pragmatic: where possible, geometric structure should be used to guide
method development, but the goal is to design effective, useable schemes that address the full
complement of modelling and numerical stability issues associated with a given problem. As
we will demonstrate, a careful use of linear dissipation can in some cases be used to promote
long-term conservation within a reduced subspace.

A significant limitation of the MI and RA methods in many applications is the crude
computation of averaging dynamics. Specifically, explicitness (important for most large-scale
applications in physics and chemistry) requires that the momentum in the MI averaging stage
be initialized in a simplistic way. This means that the method is probably worthless for
applications such as collisional astrophysics or any other situations where the stability of
dynamics is highly sensitive to both position and momentum. In molecular dynamics, the
requirement would be that the fast dynamics equilibrate extremely rapidly, which may not
always be the case if the fast dynamics are complicated. A different problem arises in reversible
averaging. In the RA method, where slow and fast variables are identified, the slow variables
are held fixed during the averaging stages. In cases where the interaction between slow and
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fast variables is delicate, this may lead to a crude fast evolution and an inaccurate averaged
slow force. The use of a fixed slow variable during averaging is in contrast to the incorporation
of drifting slow variables during the fast propagation stage of RA, a feature which is known to
be important to its success. It is natural therefore to look for a mechanism that would enable
evolution of slow variables also during the averaging steps of MI and RA. Unfortunately,
every effort to correct these schemes within the setting of time-symmetric integration appears
doomed to introduce implicitness in one form or another.

In addition, there are some multiple time-scale dynamics challenges arising in connection
with recently proposed partial thermostatting techniques [19], which may impose slow
momentum dependence on the fast dynamical evolution. The direct application of reversible
averaging method leads to an implicit integrator in this situation, while explicit reversible
integrators are preferred for reasons of computational efficiency. In practice, when confronted
with this type of difficulty, the molecular simulation research community typically adopts
ad hoc schemes which circumvent the problem (simultaneously discarding other, favourable,
features of the MI and RA schemes in the process). In this paper, we describe a more systematic
approach.

The idea we explore here is to introduce an extension of phase space via a shadow-
momentum variable which is propagated in tandem with the other variables. The momentum
is then controlled by a linear first integral. The propagators for both the mollified impulse
method and the reversible averaging method, augmented with shadow-momentum integration,
can be time-reversible, although in practice the strict conservation of geometric structure
probably must be relaxed. The issue which must be addressed concerns the propagation of
the shadow momentum in such a way that the displacement from the physical momentum
variable is controlled throughout the simulation. One approach (and by far the most useful
in experiments) involves the use of a linear dissipation term to control the growth of the
momentum displacement. The new classes of methods are described in section 3. In section 4,
we discuss numerical experiments using the shadow reversible averaging (SRA) method on
a gravitational three-body problem, highlighting the use of dissipation to control error in
the shadow momentum and discussing the critical resonance issue; the SRA method appears
to admit a wide stability interval in the long stepsize, although it is also pointed out that
the scheme requires highly accurate fast dynamics for this to work. Finally, in section 5,
we describe the use of a variation of the SRA scheme for partially thermostatted molecular
dynamics (PTMD), including simulation experiments with a simple model for a dilute gas of
diatomic molecules.

1.1. Examples of multiscale models

Although there are many potential applications for these types of methods, we consider here
just two illustrative examples. We will return to these models in the numerical experiments
later in the paper.

1.1.1. A gravitational few-body problem. A useful gravitational three-body problem
was considered in [23]. The model consists of three bodies in the plane with masses
m0 = 10,m1 = 2 and m2 = 0.2, the first of which is fixed at the origin. The two moving
bodies are started from initial conditions on the x-axis in such a way that the heavier moving
body has a moderately eccentric orbit, while the light body is initially strongly bound to the
heavier one. During perihelion, the orbit of the light body is successively disturbed. This
system is unstable, but the instability is only manifest in very long simulations, so a geometric
integration method is valuable. A sample trajectory is shown in figure 1.
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0

Figure 1. Snapshot of a sample trajectory for the three-body problem of the text.

Note that q1 and q2 both exhibit oscillations on the period of the q2 orbit around q1. In
our experiments, as in [23], we found that the centre of mass of the q1q2 system, q̄, exhibited
a clear scale separation from the vector θ = q2 − q1. The Hamiltonian in these variables is

H(q̄, θ, p̄, π) = T + V,

where

T (p̄, π) = |p̄|2
2M

+
|π |2
2m̂

,

and

V (q̄, θ) = − Gm1m0∣∣q̄ − m̂
M

θ
∣∣ − Gm2m0∣∣q̄ + m̂

M
θ
∣∣ − Gm1m2

|θ | .

As pointed out in [23], a variable timestep is valuable due to the sensitivity of the system
during perihelion approach of the middle mass. A useful choice is based on the time rescaling

dt

dτ
= |q̄|3/2,

which is easily implemented in conjunction with any suitable fixed stepsize algorithm by
means of the adaptive Verlet device (see [14, 23] for discussion). Formally, we perform a
half-step of the method, adjust the timestep in a symmetric way and perform another half-step.
This approach retains the order and time-reversal symmetry, although not volume preservation.

1.1.2. Thermostatted molecular dynamics. In many molecular dynamics simulations, it is
convenient to introduce a Nosé-style thermostat as

H Nosé = H(q, p̃/s) +
p2

s

2µ
+ gkT ln s. (1.1)

It is straightforward to show that∫
δ(H Nosé(q, p̃, s, π) − E) ds dπ dq dp̃ = constant ×

∫
exp

(
−N + 1

gkT
H(q, p)

)
dq dp,

and that canonical averages are also obtained via∫
f (q, p̃/s)δ(H Nosé(q, p̃, s, π) − E) ds dπ dq dp̃

= constant ×
∫

f (q, p) exp

(
−N + 1

gkT
H(q, p)

)
dq dp,

where p = p̃/s and N is the number of degrees of freedom. If we let g = N + 1, we find that
quasi-microcanonical averages with respect to the extended Hamiltonian H Nosé reduce to the
canonical one for the original Hamiltonian.
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It is customary to implement Nosé dynamics using the so-called Nosé–Hoover (NH)
formulation [15] which is based on simple coordinate and time transformations of the
dynamics applied to (1.1); this formulation makes clear the differential feedback mechanism
of thermal control which allows recovery of simulation data at equally spaced points in time.
Unfortunately, the scheme destroys the Hamiltonian structure of the equations. While the
time transformation of Nosé–Hoover dynamics is essential for numerical stability, there is
an alternative, superior approach available for this purpose which does not alter the natural
Hamiltonian structure of Nosé dynamics. In [4], it was proposed to develop numerical methods
for the Poincaré-transformed Hamiltonian system

H NP = s[HN − E],

where E is the value of the extended energy HN at the initial point. The resulting simulation
method is termed Nosé–Poincaré, and it allows the use of symplectic integration methods.
Enhanced stability can be expected from this method when long time interval simulations are
performed.

It is often desirable to introduce thermostatting into only some portion of the system
variables. A typical setting where this is needed is in partially coarse-grained models in
materials science. Let us write the system Hamiltonian in the following form:

H = P T M−1P

2
+

pT m−1p

2
+ V (Q, q). (1.2)

In typical cases, the variables Q and q might represent ‘slow’ and ‘fast’ variables, respectively,
but this is not essential.

Thermostatting just the q, p variables is achieved relatively simply in the setting of
Nosé–Hoover dynamics, but it is a more complicated task in the Nosé–Poincaré formulation.
The current authors have proposed, in [19], a mathematical model comprising a direct
thermostatting device for q, p and a conservative coupling between the variables. Time
transformation is used only in the q, p variables:

Q̇ = M−1P, (1.3)

Ṗ = −∇QV (q,Q), (1.4)

q̇ = m−1p

s
, (1.5)

ṗ = −s∇qV (q,Q), (1.6)

ṡ = s
π

µ
, (1.7)

π̇ = pT m−1p

s2
− gf KBT − �H, (1.8)

where

�H = P T M−1P

2
+ H[f ]

Nosé − H0, (1.9)

H[f ]
Nosé = pT m−1p

2s2
+ V (q,Q) +

π2

2µ
+ gf kBT ln s, (1.10)

and gf is equal to fast degrees of freedom, H0 being given by

H0 = P T
0 M−1P0

2
+ H[f ]

Nosé

∣∣
t=t0

. (1.11)
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The dynamics (1.3)–(1.8) are volume preserving in the extended phase space and have the
following first integral:

s�H = s

(
P T M−1P

2
+ H

[f ]
Nosé − H0

)
. (1.12)

Assuming ergodicity of (1.3)–(1.8) on the surface of constant integral (1.12), sampling
with respect to the canonical ensemble can be recovered from the trajectories of (1.3)–(1.8).
Proofs of these facts are straightforward, following standard methods, and are omitted. We
emphasize that the system (1.3)–(1.8) is no longer Hamiltonian, but can be viewed as a
time-reversible and volume-preserving system consisting of two (typically weakly coupled)
Hamiltonian models. For this formulation (or the equivalent Nosé–Hoover version), existing
Hamiltonian-based schemes are not applicable so some generalization of the standard method
is needed.

As an example, we will study a simplified 1D diatomic gas model proposed by Benettin,
Galgani and Giorgilli [3], which is subject to the following Hamiltonian:

H =
N∑

i=1

1

2

(
p2

i

/
m + π2

i

/
m + mω2ξ 2

i

)
+

N+1∑
i=1

V (xi + ξi − xi−1 − ξi−1), (1.13)

where V is the interaction potential energy, chosen as either

Va(r) = V0
exp(−(r/ρ)2)

r/ρ
,

with V0 = 1, ρ = 10, or (Lennard–Jones)

Vb(r) = 4ε((σ/r)12 − (σ/r)6),

with ε = 0.01 and σ = 1. We apply the partial thermostatting to the vibrational degrees
of freedom (DOFs) ξ and π in order to circumvent the vibrational energy freezing problem
induced by the high frequency ω, while retaining Newtonian dynamics for the translational
DOFs x and p.

2. RA and Molly: geometric properties

In this section, we outline the RA and Molly integrators and discuss their limitations for the
computation of on-the-fly numerical averages.

2.1. The mollified impulse method

The starting point for the mollified impulse method [9] is a Hamiltonian of the form

H(q, p) = pT M−1p/2 + Vf (q) + Vs(q).

In most cases, it is assumed that the potential is decomposed into a fast, but inexpensive to
compute term, Vf , and a slowly varying, but costly term Vs . The scheme does not require
knowledge of any separation into fast and slow variables.

The impulse method for this Hamiltonian consists of symmetric kicks with Vs around a
small timestep propagation of the fast system defined by the Hamiltonian Hf = pT M−1p/2 +
Vf (q). The original method was designed with a special ‘symplectic kick’ making the whole
method symplectic. The steps of the MI method are as follows:

MI-1 ( pre-average). Solve the Hamiltonian system Hf (q, p) on a suitable time interval
I for q+(t), p+(t), using the initial conditions q+(0) = qn and a fixed momentum p0. The
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position is averaged along this path. We define the averaged value of position along the
averaging path (possibly with respect to a kernel) as a function of qn, a(qn), and then

F̄ n
+ := −a′(qn)T ∇qVs(a(qn)),

where a′ is the Jacobian matrix of the function a. This is termed the mollified impulse.
We then compute a half-step in the momentum by

pn+1/2 = pn + (h/2)F̄ n
+ .

MI-2 ( fast propagation). Solve the Hamiltonian system Hf (q̂, p̂) on [0, h], using the
initial conditions q̂(0) = qn and p̂(0) = pn+1/2:

qn+1 = q̂(h), p̃n+1/2 = p̂(h),

MI-3 ( post-average). Solve the Hamiltonian system Hf (q, p) on suitable interval I ′ for
q−(t), p−(t), using the initial conditions q−(h) = qn+1, and a fixed momentum p′

0 using
this trajectory to average the force acting on the slow variables:

F̄ n+1
− := −a′(qn+1)T ∇qVs(a(qn+1)).

To obtain pn+1, we use

pn+1 = p̃n+1/2 + (h/2)F̄ n+1
− .

The mollified impulse method offers the prospect of improved stability compared to the
standard impulse or ‘multiple timestepping’ method. Moreover, the method is symplectic if
the averaging is performed in a suitable way, due to the special form of the mollified impulse.
In effect, the kicks have been replaced by softened kicks which are still based on a potential
energy function, now of the form Vs(a(q)). However, the assumption that the initial conditions
for p can be fixed during the averaging step seems to suggest that the method will only work
well when the averaging interval is long enough to allow decorrelation of the fast variables,
i.e. with a so-called long average, or in cases where the fast dynamics have a simple structure
whose details are not relevant to the slow evolution. In many practical situations, one expects
the fast dynamics to evolve in such a way that the initialization of fast variables is highly
nontrivial.

Many variations of the basic MI method are possible. In the molecular dynamics
setting, one could attempt to choose p from a stochastic distribution, but this process,
while altering substantially the theoretical foundation for MOLLY, would also introduce
some new complexity, as it may require much computational effort (‘equilibration’) to find
good initial data by sampling consistent with an evolving canonical distribution defined by
slow variables. In applications such as gravitational N-body simulation, the choice of p in
the averaging step may have a profound influence on the dynamics of the fast trajectory,
and a scheme which uses fixed momenta at the averaging stage is likely to introduce large
errors in the impulses, leading to serious instabilities. Also of interest in some biomolecular
simulation applications, ‘equilibrium-MOLLY’ replaces the averaging with respect to bond-
length vibrations by solution of a SHAKE-type constraint related to the special-form fast
potential [17].

One way to introduce flexibility in the design of multiscale integrators such as MI is to
relax the requirement of symplecticness, e.g. by averaging the force instead of evaluating the
force at an averaged position (in some applications these two averages will be quite different).
This can be done in such a way that the method retains its time-reversibility. Specifically, we
think to replace the MI-1 with MI-1* as follows:

MI-1* ( pre-average). Compute a suitable averaging dynamics q+(t), p+(t) depending
only on the initial conditions q+(0) = qn and a fixed momentum p0 on time interval I.
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Then, define

F̄ n
+ := −〈∇qVs(q+(t))〉I .

Next, compute a half-step in the momentum by

pn+1/2 = pn + (h/2)F̄ n
+ .

The MI-3 step should likewise be replaced by a complementary MI-3* step. Observe that
the resulting scheme will be volume preserving, since the MI-1* and MI-3* steps update only
the momentum based on position only and the MI-2 step is always volume preserving since
it involves the solution of a Hamiltonian system. Note that this volume-preserving property
holds quite independently of what the term ‘suitable averaging dynamics’ is interpreted to
mean. To obtain time-reversal symmetry, the averaging in the MI-1* and MI-3* steps must
be performed in a symmetric way. We will show in section 3 of this paper how this method
(or the original MI method) can be altered so that the fast averaging system is automatically
initialized at each timestep.

2.2. Reversible averaging

As presented in [24], the reversible averaging method is applicable to conservative systems
with identifiable fast and slow variables and a Hamiltonian of the form

H(qs, ps, qf , pf ) = 1
2pT

s M−1
s ps + 1

2pT
f M−1

f pf + V (qs, qf ),

where qf is a vector of fast coordinates, qs a vector of slow coordinates, and pf and ps are
the corresponding vectors of momenta. Ms and Mf are respective mass matrices for the two
sets of variables.

For notational simplicity, and also because it is somewhat more general (including, for
example, the thermostatted coarse-grained molecular dynamics model of the introduction),
we consider here a system of the form

d

dt
qs = M−1

s ps, (2.1)

d

dt
ps = −∇qs

V (qs, z), (2.2)

d

dt
z = f (qs, z). (2.3)

This would be typically interpreted as Newtonian dynamics of slow variables in a force
field determined by some arbitrarily defined, although time-reversible and, perhaps, volume
preserving, fast process. The associated structural assumptions regarding the differential
equations are (volume preservation)

∇z · f = 0,

and (time-reversal symmetry)

f (qs, Rzz) = −Rzf (qs, z),

where Rz is a constant matrix satisfying R2
z = I .

We introduce the fast system

d

dt
z = f (qs, z). (2.4)

Now we are ready to describe the steps of the reversible averaging method for this system.



Geometric integrators for multiple time-scale simulation 5387

RA-1 ( pre-average). Solve the system (2.4) on the time interval [0, βh] for z+(t), using
the initial conditions z(0) = zn and with qs ≡ qn

s . Compute

F̄ n
+ := −〈∇qs

V
(
qn

s , z+(t)
)〉

[0,βh].

The slow kick is just

pn+1/2
s = pn

s + (h/2)F̄ n
+ .

RA-2 ( fast propagation). Solve the system (2.4) on the time interval [0, h] for ẑ(t), using
the initial condition ẑ(0) = zn, where qs = qs(t) = qn

s + tM−1
s p

n+1/2
s . Set

zn+1 = ẑ(h), qn+1
s = qn

s + hM−1
s pn+1/2

s .

RA-3 ( post-average). Solve the system (2.4) on the time interval [(1 − β)h, h] for z−(t),
backwards in time, using the initial conditions z(h) = zn+1 and with qs ≡ qn+1

s . Compute

F̄ n+1
− := −〈∇qs

V
(
qn

s , z−(t)
)〉

[(1−β)h,h].

Adjust the slow momentum with

pn+1
s = pn+1/2

s + (h/2)F̄ n+1
− .

The actual way in which the fast trajectory computation is handled is problem dependent;
in the elementary formulation, it is just assumed that this can be done exactly, but in
practical settings one must expect to use an appropriate numerical method. The RA method
is symmetric and time-reversible with respect to the involution z → Rzz, ps → −ps . It was
shown in [24, 25] that, for suitable β, when applied to a doubly harmonic model (slow/fast
frequencies), the reversible averaging method is not susceptible to destructive resonances near
certain rational fractions of the fast period (such resonances are observed for nearly all the
standard methods, including the mollified impulse method).

The forward averaging step in RA-1 is of the form

q̇s = 0, ṗs = −〈∇qs
V (qs, z

+(t))
〉
[0,T ] ż = 0,

where, because of the definition of the averaging step, z+(t) = z+
f

(
t; q0

s , z
0
)
, i.e., it is a function

only of initial values of qs and z. It is immediately apparent that this vector field is divergence
free. A similar argument applies to the fast propagation and backward averaging steps, each of
which can be interpreted as the solution of an appropriate divergence-free vector field. Thus,
the RA method is volume preserving for the dynamics (2.1)–(2.3).

Somewhat remarkably, the argument, which only relates to the dependency of the
averaging dynamics on the variables of the system, places no restriction on the way in which
the fast dynamics are propagated during the averaging step. In fact, it is possible to use a
non-volume-preserving numerical integrator for this purpose, while still formally retaining
the volume-preserving property for the overall method! It is important not to overlook the
requirement that the averaged vector field must have a good approximation property. Moreover,
for good stability, it is also important that the method be characterized as the iteration of a
unique map, thus the way in which the fast trajectories and averages are computed should
be the same at every step. Finally, it is probably important to maintain the time-symmetric
feature of the scheme.

Because of the added cost of averaging, the reversible averaging method is only of direct
relevance in applications where the fast dynamics (2.4) are much easier to compute than those
of the full system. This is typically the case if there are relatively few fast variables. Despite
this limitation, the method would appear to be potentially applicable to certain relevant classes
of applications in molecular dynamics, materials science and celestial mechanics.
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In steps RA-1 and RA-3, the averages are computed with respect to fast trajectories
subject to fixed slow position. This is in obvious contrast to the linear drift of the slow
variable during the fast propagation step in step RA-2. We would like to mimic this effect in
the averaging steps as well. It may seem that we could do this by introducing a dynamic of
the form q̇s = M−1

s ps; ṗs = 0 into the fast averaging computation. Although this could be
accomplished during the forward average, for which the initial value of ps is available, it is
not known during the backward average of step RA-3, and the use of a scheme like this, with
preservation of time-reversal symmetry, would lead to an implicit method which is probably
not useable for efficiency reasons in most practical applications.

In the following, we will demonstrate that incorporation of a shadow slow momentum can
resolve this problem, allowing an enhanced average with desirable drift of the slow variable
while retaining time-reversal symmetry and explicitness of the scheme.

3. Incorporation of shadow momentum

The basic idea we wish to consider is the extension of phase space by the introduction of a
new momentum variable which allows a more flexible treatment of the averaging computation
while retaining phase space structure. An idea similar to this was suggested in [28], wherein
the forces were identified with auxiliary variables in an effort to increase order of accuracy.
The method is also reminiscent in some ways of the incorporation of a fictive stepsize using
artificial dynamics in the time-reversible adaptive Verlet method [16]. The key difference with
these earlier works is that our aim here is to utilize the additional freedom provided by the
augmenting momentum variable to exploit scale separation in the equations of motion.

There are various ways that the computation can proceed: we may employ either a
differential or an algebraic equation to drive the computation of the shadow momentum.
Specifically, we could introduce the shadow momentum P by

P = p, (3.1)

or
d

dt
P = d

dt
p. (3.2)

In the former case, we are faced then with the discretization of a differential-algebraic equation,
in the latter a differential equation system. In either case, the discretization of the equations
must be carefully chosen to preserve both the desired structural properties, the stability of the
scheme and its efficiency.

3.1. The mollified impulse method with shadow momentum

We wish to remove the stipulation of fixed momentum initialization in the averaging step of
the mollified impulse method. The idea is to incorporate a shadow-momentum variable P,
together with a suitable alternative equation to advance this new variable.

Observe that this extension does not alter the time-reversibility or volume-preservation
properties of the system (although these must be interpreted in terms of the larger space). On
the other hand, the Hamiltonian structure is sacrificed1.

We next described the steps of a modified MI* algorithm for evolving this system, which
we refer to as shadow mollified impulse (SMI).

1 Note that in [28] the authors claimed that their alternative approach to phase space extension results ultimately in
a symplectic method; it is easily verified that the Hamiltonian structure is lost there too and that the components of
their splitting are, as in our situation, volume preserving in extended phase space.
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SMI-1 ( pre-average). Compute a suitable averaging dynamics q+(t), p+(t) depending
only on the initial conditions q+(0) = qn and p+(0) = P n on time interval I. Then, define

F̄ n
+ := −〈∇qVs(q+(t))〉I .

Next, compute a half-step in the momentum by

pn+1/2 = pn + (h/2)F̄ n
+ .

SMI-2 ( fast propagation). Solve the Hamiltonian system Hf (q̂, p̂) on [0, h], using the
initial conditions q̂(0) = qn and p̂(0) = pn+1/2:

qn+1 = q̂(h), p̃n+1/2 = p̂(h).

We also consider one of the following alternatives for updating the shadow momentum:

P n+1 = P n − h

2

(∇Vs

(
qn+ 1

2
)) − h〈∇qVf (q̂(t))〉[0,h], (3.3)

or

P n+1 + P n = 2pn+1/2. (3.4)

SMI-3 ( post-average). Compute a suitable averaging dynamics q+(t), p+(t) depending
only on the initial conditions q−(h) = qn+1 and p−(h) = P n+1 on time interval I ′. Then,
define

F̄ n+1
− := −〈∇qVs(q−(t))〉I ′ .

Next, compute a half-step in the momentum by

pn+1 = p̃n+1/2 + (h/2)F̄ n+1
− .

For symmetry, obviously we should choose the intervals I and I ′ in a symmetric way. With
this scheme, the initialization of the fast dynamics during averaging is now fully automated.

If the algebraic update for P n+1 in step SMI-2 is used, then no additional ∇Vs computation
is needed compared to MI. However, if the differential update is employed at least one
additional force computation will be required.

Let us now establish the (extended) volume-preserving property of this method. First,
observe that in SMI-1 only the momentum p is updated, and the update depends only on the
values of q and P. Thus, this step is volume preserving. The same observation holds for SMI-3.
In SMI-2, q and p are both updated by solving a Hamiltonian system, while P is updated in a
way that depends only on initial values of q and p, hence this step too is volume preserving.

In case the algebraic equation (3.4) is used to compute the shadow momentum, the
volume-preserving aspect of the differential equations is slightly different. The presence of
the constraint means that the phase space is not really extended. However, if a numerical
scheme such as (3.4) is employed, the shadow momentum should again be viewed as evolving
in the larger space. This is analogous to the situation that arises in the adaptive Verlet method
[14, 16]. While the phase space compressibility (Jacobian of the map) in steps SMI-1 and
SMI-3 is still 1, in SMI-2 with (3.4) this determinant is −1. Composing two steps of the
method therefore leads to a volume-preserving approximation method.

3.2. The reversible averaging method with shadow momentum

Let us now consider a ‘shadow’ version of the reversible averaging method which is based on
duplication of the slow momentum by Ps and the discretization of an appropriate differential
equation of the form

d

dt
Ps = d

dt
ps ≡ −∇qs

V (qs, z). (3.5)
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Again, an algebraic equation Ps = ps would be an alternative. The differential equations to
be treated here are therefore

d

dt
qs = M−1

s ps, (3.6)

d

dt
ps = −∇qs

V (qs, z), (3.7)

d

dt
z = f (qs, z), (3.8)

and the fast system becomes

d

dt
qs = M−1

s ps, (3.9)

d

dt
ps = 0 (3.10)

d

dt
z = f (qs, z). (3.11)

SRA-1 ( pre-average). Solve the system (3.9)–(3.11) on the time interval [0, βh] for
z+(t), q+

s (t), using the initial conditions z(0) = zn and qs(0) = qn
s , ps(0) = P n

s . Compute

F̄ n
+ := −〈∇qs

V
(
q+

s (t), z+(t)
)〉

[0,βh].

We term this drift averaging, since the slow position is allowed to drift along a linear path
during the computation of the averaged force (for efficiency, we might wish to introduce
further approximations in this computation, see below). Now the slow kick is just

pn+1/2
s = pn

s + (h/2)F̄ n
+ .

SRA-2 ( fast propagation). Solve the system (3.9)–(3.11) on [0, h], using the initial
conditions z(0) = zn, qs(0) = qn

s , ps(0) = p
n+1/2
s . Set

zn+1 = z(h), qn+1
s = qs(h),

where z(t) is the true or numerical solution of fast dynamics and qs(t) = qn
s + hM−1

s p
n+1/2
s .

At the same time, we update Ps using either

P n+1
s = P n

s − h
〈∇qs

V (qs(t), z(t))
〉
[0,h], (3.12)

or

P n+1
s + P n

s = 2pn+1/2
s . (3.13)

SRA-3 ( post-average). Solve the system (3.9)–(3.11) on the time interval [(1 − β)h, h]
for z−(t), q−

s (t), backward in time, using the initial conditions z(h) = zn+1 and
qs(h) = qn+1

s , ps(h) = P n+1
s . Compute

F̄ n+1
− := −〈∇qs

V (q−
s (t), z−(t))

〉
[(1−β)h,h].

and

pn+1
s = pn+1/2

s + (h/2)F̄ n+1
− .

Again, it is straightforward to check that the scheme is both volume preserving and
time-reversible, by examining each step in turn. The computation of Ps could be made more
efficient if V admits a splitting V = Vs(qs) + Vf (qs, qf ) where Vs is much more costly
than Vf .
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3.3. Stabilizing the shadow momentum

Clearly SMI will only be valid as long as P ≈ p (Ps ≈ ps in the case of SRA), otherwise the
averages will be computed with respect to the wrong slow variables.

We may take P − p in SMI as either a constraint or a first integral, depending on whether
the algebraic or differential scheme is used. While the theory for long-term approximate
conservation of first integrals by nonsymplectic methods is not completely developed, there
are both positive experiences (the stability of the energy quantity in the case of the Nosé–Hoover
method) and partial theoretical results (the stability of adiabatic invariants of nearly integrable
systems using reversible methods). On the other hand, a weak instability is certainly possible
with reversible methods. In practice, the stability of the quantity P − p or Ps − ps must be
checked for whatever scheme is employed; fortunately, this control is quite straightforward to
implement. The results presented in the following section (for shadow reversible averaging)
confirm that the strategies described in the algorithms above lead to a slow drift in the
momentum displacement in numerical simulation.

To solve this problem, our suggestion is to turn the constraint manifold Ps = ps into a
stable manifold [33] of the extended system by the introduction of a dissipative term. Along
this stable manifold, the dynamics are conservative. A simple way to do this is to replace the
differential equation (3.5) by

d

dt
Ps = −∇qs

V (qs, z) − α(Ps − ps). (3.14)

The coefficient α > 0 is obviously important and the choice will be problem dependent. From
this equation, we see that

d

dt
(Ps − ps) = −α(Ps − ps),

so Ps(t) − ps(t) = (Ps(0) − ps(0)) exp(−αt). Since the vector field for q, p, z does not
involve P at all, this modification of the dynamical system does not have any effect whatsoever
on the dynamics in the physical variables.

On the other hand, as the shadow momentum is introduced directly in the numerical
method as part of the averaging, the coupling effect may depend on the discretization method
used. One scheme for this purpose is the following:

P 1
s = P 0

s − h
〈∇qs

V
(
q

1
2
s , z(t)

)〉 − hα

(
P 0

s + P 1
s

2
− p

1
2
s

)
, (3.15)

where the average would be taken over the time interval [0, h]. If a splitting V =
Vs(qs) + Vf (qs, qf ) is available, with Vs more costly to evaluate than Vf , then this can
be exploited. For such a case, the suggestion is to replace (3.15) by

P 1
s = P 0

s − h

2

(∇qs
Vs

(
q0

s

)
+ ∇qs

V
(
q1

s

)) − h
〈∇qs

Vf (qs(t), z(t))
〉 − hα

(
P 0

s + P 1
s

2
− p

1
2
s

)
,

(3.16)

in which case, no new ∇Vs evaluations are needed and the computation of the averaged force
on the slow variables due to the fast variables is potentially more accurate. It is this method
that we have studied in the numerical experiments.

In [2, 30], it has been suggested that a good way to handle dissipation is to split the
dissipative vector field from the conservative one and to solve these terms successively. We
found that (3.16) worked well in the examples we studied and did not explore these other
choices.
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3.4. Angular momentum conservation in the SMI algorithm

The reversible averaging method does not conserve the total angular and linear momentum of
the system. It is observed in many applications that these quantities are conserved rather in
an averaged sense. In cases where the exact conservation of momentum is critical, it seems
that only the impulse method or the symplectic mollified impulse methods offers a multiscale
integration option. Since the use of the shadow momentum destroys the symplectic property of
the MI method, it may seem that the prospects for angular and linear momentum conservation
are also dim. Actually, the SMI method does conserve linear momentum, since the linear
averaging preserves this property. Moreover, it is possible to modify the averaging process in
SMI method so that angular momentum is also conserved.

In steps SMI-1 and SMI-3, we compute an averaging trajectory q±(t) which depends on
the relevant values of q and P (either at the beginning or ending of the step). If, as in the
original symplectic MI method, we define using this trajectory an averaging operator a(q, P ),
then the relevant criterion for angular momentum conservation is that the force average be
central. Assuming that Vs is a central potential field this can easily be accomplished by setting,
e.g. in the forward step,

F̄ n
+ := −aT

q ∇qVs(a(qn, P n)).

In this way, the averaged slow force can still be viewed as the gradient with respect to q of a
smoothed potential energy function Vs ◦ a. Both the averaging operator a(q, p) and its partial
Jacobian matrix aq can be computed during the propagation of the fast averaging trajectory.

4. Application to a three-body gravitational model

For a linear model problem (e.g., a doubly harmonic oscillator), it is easily demonstrated that
the SRA method is equivalent to the RA method: the propagation of the shadow momentum
is decoupled from the physical variables. Thus, the linear resonance behaviour is equivalent
to that of RA for the new class of methods.

To demonstrate the use of shadow momenta in a nonlinear setting, we have here
implemented the SRA scheme for a gravitational three-body problem mentioned in the
introduction. We compared three similar methods: the reversible averaging method, and
algebraic, differential and dissipative variants of the shadow reversible averaging method
(with drift averaging). The critical parameters for our study include �s, the fictive integration
timestep which acts as a control on the long timestep and hence the accuracy of both the slow
and fast dynamics simultaneously, as well as the number of fast timesteps used within each long
step, m, which directly controls only the resolution of the fast variables. Other parameters have
been fixed in our experiments. Whereas the choice β = 1 (averaging over the full timestep in
both forward and backward averaging stages) is recommended to remove all resonances of the
RA method for a linear model problem (see [25]) β = 1/2 appeared to be much better in the
gravitational model (as also seen in [23]); we do not have a theoretical explanation for this fact.
In implementing the method we have several choices. In our simulations, we assumed that
the same small timestep and numerical method (leapfrog) were used in both the computation
of the averaging trajectories and the fast propagation, with half as many steps in each of the
averaging stages, thus there is typically an overhead consisting of doubling the cost of the fast
force evaluation compared to a standard integration. (This cost will be warranted if the large
timestep can be substantially increased and the cost of slow force evaluation represents the
bulk of the work in a timestep.)

Let us first summarize the use of the standard reversible averaging method and its
combination with adaptive Verlet. In simulation of a typical orbit with the prescribed initial
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Figure 2. Comparison of energy errors for adaptive Verlet (dash-dotted) and adaptive RA (‘*’).
The RA method has a rise in energy error near the perihelion approach, due to the much larger
outer timestep and consequent infrequent evaluation of the slow force. Error behaviour is very
different in intervals ‘A’ (near perihelion) and ‘B’ (away from perihelion), see the text.

conditions and parameters, the light body q2 orbits q1 approximately 30 times during a period
of the motion of its centre of mass with respect to the origin. The adaptive Verlet method with
the described timestep control was stable to about �s = 0.002 on the interval [0, 500]. In
figure 2, we compare energy errors for the adaptive Verlet (AV) method with fictive stepsize
�s = 0.001 against the adaptive reversible averaging method (without shadow momentum)
using fictive stepsize �s = 0.05 and m = 50 fast steps per long step. There are essentially
two regimes for the dynamics: the vicinity of perihelion (of the centre of mass of the moving
body system with the fixed body) marked ‘A’ in the figure and the region away from perihelion
marked ‘B’. In interval A, the error is dominated by the slow variable dynamics; in interval
B the error is dominated by the resolution of the internal dynamics of the binary. In ‘B’, the
RA method shows an erratic error portrait—this is just an artefact of the sampling of energy
error only at the relatively long outer timestep; the key observation is that the maximum error
is very similar to that of AV in this interval. In interval ‘A’, the much smaller overall timestep
of the AV run gives rise to a relatively very small energy error compared to RA.

We next compare the results with the three different variants of the shadow reversible
averaging method: the differential method, SRA(diff); algebraic method SRA(alg) and the
dissipative scheme SRA(diss) (with α = 100) on a long time interval. Energy errors are shown
in figure 3 for all three methods, whereas the critical displacement of the shadow momentum
is charted in figure 4. We see that the algebraic and differential schemes show a very clear
secular drift of the shadow momentum in these simulations. On the interval [0, 600], the drift
is severe for the differential method (|Ps − ps | ≈ 0.6) and an order of magnitude smaller
for the algebraic scheme. The dissipative scheme, somewhat remarkably, shows a highly
stable evolution of the shadow momentum and no secular drift or dissipation of total energy.
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Figure 3. Energy error for the three variants of shadow reversible averaging. Top: SRA(diff);
middle: SRA(alg) and bottom: SRA(diss).
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Figure 4. Shadow momentum drift for the three variants of shadow reversible averaging. Top:
SRA(diff); middle: SRA(alg) and bottom: SRA(diss). Results are for same three runs of figure 3.

The consequence of the severe drift in the differential method is evident in the top panel of
figure 3, although not apparent for algebraic method on this time interval.
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Figure 5. Energy versus fictive stepsize, for long stepsize in the vicinity of a fast period for the
double oscillator problem with β = 1. The severe instability is for m = 40 which represents a
stepsize in the fast dynamics substantially below the Verlet stability threshold. As m is increased,
the method approaches the asymptotic limit corresponding to exact fast variable dynamics.

4.1. Stepsize resonance and efficiency comparisons

In many (most) multiscale methods one finds ‘stepsize resonances’ at small multiples of the
fast period of motion. In typical nonlinear models one finds such resonances, but they are not
seen in the gravitational problem considered here as long as the fast dynamics are resolved
with high accuracy.

The consequence of inaccuracy in the fast dynamics is of interest. In figure 5, we graph
the energy error of a double oscillator, subject to the Hamiltonian

H(qf , qs, pf , ps) = 1

2
p2

s +
1

2µ
p2

f +
1

2
q2

s +
k

2
(qf − qs)

2, (4.1)

for stepsize near a fast period, for various values of m, where m is the number of substeps of the
basic stepsize used to resolve the fast dynamics. A large amount of energy was introduced in
the fast subsystem in our experiment to dramatize the effect of inaccurate fast dynamics. For
large values of m, the method behaves as predicted in [24, 25]. Note, in particular, the two mild
rises which correspond to the mentioned close approach of eigenvalues. For even modestly
large values of m, but so that the fast stepsize is still well below the Verlet stability threshold,
the method can be destabilized. Evidently, the RA (or SRA) method carries a requirement
that the localized fast dynamics should be very accurately resolved at each timestep. Figure 6
shows that a similar sort of picture is observed for long stepsize near five and six fast periods.

In the gravitational three-body model, the RA method is free of what we could term
stepsize resonance until at least �s = 0.2 (about 100 times the stability threshold of the fast
dynamics), provided a sufficiently large value of m is used so that the localized fast dynamics
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Figure 6. Energy versus fictive stepsize, for long stepsize in the vicinity of five (left side) and six
(right side) fast periods of the double oscillator model.

is accurate (again, well beyond the accuracy needed to maintain the stability of the leapfrog
method). The two curves in figure 7 marked by ‘.’ and ‘*’ show the results of applying the
RA method with stepsizes in the range [0.01, 0.1] on a time interval [0, 500] and for two
different values of m. As can be seen, the results are almost identical except in a small region
of stepsizes; both methods are evidently reliable at these large stepsizes, using a sufficiently
fine discretization of the fast variables. Note that the second-order accuracy of the method is
verified by the slope (2) of the error-stepsize curve in log–log scale.

When the adaptive shadow RA method is used, the results are very different. First,
we found that substantially greater accuracy was needed in the fast dynamics in order to
obtain a second-order scaling law. This is not surprising when we note that the errors are
approximately two full orders of magnitude smaller than for adaptive RA! The fact that
extremely high accuracy in the fast dynamics appear to be important for the stability of the
method is unexpected, however. The most likely cause is the sensitivity of the gravitational
model (with singular potential), rather than any standard resonance phenomenon. When large
outer steps are used, the internal dynamics of the binary appear to be easily destabilized. On
the left of figure 7, we see that the three curves (marked by plus sign, circle and triangle,
respectively) representing successively finer fast discretizations. Accuracy appears to be
increasing even when the fast variables are being resolved with effective fictive stepsizes of
10−4. It appears that with even smaller fast stepsizes, the errors would come into line with
a second-order scaling law. At the same time, the smaller fast stepsizes in the second and
third simulations are needed to remove the instabilities visible in the ‘plus’ curve at about
�s = 0.09. At larger values of m there are, however, still a few significant instabilities,
suggesting the possibility of a resonance at these large stepsizes.
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Figure 7. Energy versus fictive stepsize in log–log scale. The five curves shown are: (a) adaptive
RA (on-axis symbol dot), using stepsizes ranging from 0.01 to 0.1 and with m ranging from 100
to 1000 in proportion, (b) on-axis symbol star: same as (a) but with m ranging from 200 to 2000,
(c) on-axis symbol plus sign: adaptive shadow RA with stepsizes in the same range as above and
m ranging from 100 to 1000, (d ) on-axis symbol circle: same as (c) but with m ranging from 200
to 2000, (e) on-axis symbol triangle: same as (c) but with m ranging from 400 to 4000.

5. Application to thermostatted molecular dynamics

We next explain how the shadow-momentum idea applies in the setting of multiple time-scale
treatment of a PTMD model. In this model, the fast dynamics is maintained in equilibrium
while the slow variables are assumed to be left in the transient regime. The presence of the slow
momenta in �H in (1.8) allows for thermal coupling across scales. In a multiscale averaging
scheme, the slow momentum must be introduced in both pre-average and post-average steps.
The shadow momentum allows us to compute these averages without introducing an implicit
calculation of the slow momentum.

5.1. Algorithms

Since the fast subsystem in the PTMD model (1.3)–(1.8) involves not only the slow variable
Q but also the momentum P, the direct application of the reversible averaging (RA) method in
[24] is impossible. A generalization of the RA method is therefore needed to resolve PTMD.

The natural starting point is a vector field splitting as

VF1: Ṗ = −∇QV (q,Q)

VF2: Q̇ = M−1P

ẏf = g(yf ,Q, P ),
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where yf represents the vector of dynamical variables in the fast subdynamics. In the RA-like
framework, we replace the vector field VF1 by

AVF1: Ṗ = 〈−∇QV (q(t),Q)〉time, (5.1)

with on-the-fly time average during the numerical integration employed in place of the global
average used in theory. We suppose that the symmetric (forward and backward) averaging
idea will result in two symmetric subsystems AVF1+ and AVF1−, respectively. Thus, we can
formulate our numerical integrator as

φh = φ
h/2
AVF1− ◦ φh

VF2 ◦ φ
h/2
AVF+ . (5.2)

A fundamental challenge now becomes apparent. If there exists the coupling between the
fast subdynamics and slow momentum P, as we expect in PTMD, the averaging procedure
cannot be performed before we solve the subsystem AVF1− because the slow momentum P 1

is not available. We have considered several possible ways of resolving this difficulty.

5.1.1. Implicit approach. One method is to define P 1 implicitly by

P 1 = P 1/2 − h/2〈−∇QV (q(t),Q1)〉
where q(t) is now obtained by solving backwards in time from q1, p1, with Q = Q1 and
P = P 1. Unfortunately, this method leads to an expensive iteration (with multiple fast solves)
to determine P 1.

5.1.2. Alternative fast propagation. The P-dependence in the fast dynamics is a consequence
of using a Nosé–Poincaré approach within PTMD, which however is likely to improve
stability. Nothing prevents the use of a combination method whereby Nosé–Hoover dynamics
is employed to compute fast dynamics during the averaging stage, whereas Nosé–Poincaré is
still the basis for fast propagation. For the reasons outlined in section 2, this scheme retains
both volume preservation and time-reversal symmetry, if the averaging is performed in a
time-symmetric way.

5.1.3. Use of shadow variables. An independent procedure can also be employed to compute
a shadow slow momentum P̄ , distinguished from the propagation solution P. An option is to
use an algebraic relation such as

G(P̄ n+1, P̄ n, P n+1/2) = 0, (5.3)

where G is symmetric with respect to the exchange of P̄ n+1 and P̄ n. This corresponds to
the algebraic shadow-momentum method. We implemented this scheme, but as we note in
the following, it behaved poorly. An improved approach was based on updating P̄ from an
alternative solution of its governing differential equation, i.e. by using the differential scheme

Ṗ = −〈∇V (q(t),Qn+1/2)〉
which takes advantage of the available fast propagation. Similarly, the dissipative scheme can
be developed in an analogous way to the formulation of section 3.

5.2. Numerical experiments

We compared three variants of SRA, applied to the model of Benettin et al (1.13), for the
conservation of the first integral and drift of shadow momentum P̄ with reference to P. In
figure 8, the linear drift of P̄ along P for SRA(diff) and SRA(alg) is shown, compared with a
stable (although chaotic) oscillation for SRA(diss). The conservation of first integrals for three
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Figure 8. Shadow momentum drift for the three variants of shadow reversible averaging, δt = 0.05.
Top: SRA(diff); middle: SRA(alg) and bottom: SRA(diss).

SRA variants is shown in figure 9. On the given time scale, there is no obvious consistent
energy drift for all the methods, in contrast with the three-body astrophysical model, for
which the linear drift of P̄ of SRA(diff) was seen in energy drift. The reason, we think,
is that the Benettin model always maintains the time-scale separation (adiabatic decoupling)
between the translational and vibrational DOFs during the time evolution, while the three-body
gravitational model may violate time-scale separation during the perihelion approach of the
heavier moving body. The effect of inaccurate shadow momentum may be averaged out locally
for the Benettin model, however it deteriorates the averaging calculation more seriously for
the three-body model. On the other hand, the effect of inaccuracy in the shadow momentum
for Benettin’s model has a substantial effect on the presence of numerical resonances. In
figure 10, the superior numerical stability of SRA(diss) compared to SRA(diff) and SRA(alg)
is demonstrated.

In addition, we would like to compare dynamical resolution (the sampling issue has
been studied in [19]) between the partially thermostatted and unthermostatted variants of
Benettin’s model solved by the SRA(diss) and RA methods, respectively. In figure 11,
the numerical simulation demonstrates that transient dynamics for translational DOFs coincide
for the two models. Furthermore, the running temperature, calculated by the running
average of kinetic energy, behaves in statistically similar fashion for both models in
figure 12.

5.3. Discussion

When the considered dynamics is chaotic, one question is whether the compatibility between
the P̄ and P can be assured. In practical multiple time-scale MD simulation, the chaotic nature
of the whole system is mainly reflected in the evolution of the fast subdynamics of PTMD. So,
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Figure 9. First integral evolution for three variants of shadow reversible averaging, δt = 0.05.
Top: SRA(diff); middle: SRA(alg) and bottom: SRA(diss). Results are for same three runs of
figure 8.
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Figure 10. A log–log diagram of maximal first integral error versus stepsize 0.05–0.5, with three
variants of shadow RA methods applied to partially thermostatted Benettin model (ω = 10), for
the simulation time interval [0 1000].
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Figure 11. Transient dynamics of translational DOFs for unthermostatted (RA) and
partially thermostatted Benettin model (SRA(diss)). Left: translational centre position and right:
translational centre momentum.
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Figure 12. Translational temperature, calculated by the running average of translational kinetic
energy, for unthermostatted (RA) and partially thermostatted Benettin model (SRA(diss)).

we are more concerned with the sampling properties for the fast subdynamics. That is why
we can employ the averaging idea over the fast degrees of freedom to get an effective slow
subdynamics globally (in theory) or locally (in numerical simulation).

On the other hand, depending on the time scale and purposes of simulation, the ‘effective’
slow dynamics of heavy particles may be viewed as relatively mildly chaotic. In practice, we
are more concerned with the non-equilibrium (dynamical) properties for the slow subdynamics,
and even possibly in their accurate time evolution. In these cases, P̄ and P, as computed in
the above, could be compatible for a long interval.

In cases where the evolution of both the slow and fast variables is strongly chaotic,
we should investigate alternative approaches to implementation of the reversible averaging
method, such as the combined Nosé–Hoover/Nosé–Poincaré scheme mentioned above.

In the above experiments, we have used the potential Va which matches that given in
(1.13). We also considered the effect of replacing Va with the Lennard–Jones potential
Vb which is more commonly used in molecular simulation. Our observation is as follows:
provided that the parameters are chosen so that the time-scale separation of Benettin’s model
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is maintained, then the behaviour with Lennard–Jones potential is very similar to that with the
original potential. Essentially, this means that we must maintain the system in the gaseous
state. In the liquid state, the time-scale separation is greatly reduced and resonances become a
much more serious problem for all methods. For liquid-state molecular simulation, there may
be better alternatives to schemes based on dimensional reduction and local averaging. For
example, a special type of resonance-free dynamics, which samples the canonical ensemble,
is constructed in [31] by controlling the kinetic energy of every degree of freedom, and this
promises longer time stepsize for biomolecular conformational sampling problems.

6. Conclusion

The use of a shadow-momentum variable can improve the accuracy of averaging in the
mollified impulse and reversible averaging methods. To be effective, the shadow momentum
must remain near the true momentum throughout the simulation. In our experiments on the
gravitational problem, and also in a thermostatted multiscale model, two symmetric schemes
failed to stably maintain accuracy of the shadow momentum, but this was well controlled by
the use of a linear dissipation incorporated into the dynamics of Ps explicitly for this purpose.
For the doubly harmonic model problem, the incorporation of the shadow momentum does not
alter the propagator of RA method, but for a nonlinear model there are substantial differences
between RA and SRA. In the simulation of the three-body problem with adaptive Verlet
stepsize adjustment, the SRA method shows much greater accuracy during close approach
for the same long (fictive) timestep. Provided an accurate fast dynamic is computed during
averaging, SRA is similar to RA in being stable for a wide range of long timesteps.

In the partially thermostatted MD model, the availability of the slow momentum has
additional practical benefits: it allows treatment of models in which the fast vector field f

depends on both the slow momenta and slow positions.
This paper opens up several interesting directions for future work. The requirement of

very accurate fast averaging dynamics in the gravitational model would be a serious burden
in many applications. To have a hope to address this problem, we need to understand the
mechanism by which inaccuracy in the fast averaging induces resonance. An analysis might
be possible using backward error analysis. Another direction for future work, suggested in
this paper but not tested in numerical experiments, is the use of a shadow-momentum variable
to enhance averaging in the mollified impulse method.
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